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LETTER TO THE EDITOR 

Intrinsic fluctuations determined by the existence of a centre 
manifold 
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Frick Laboratory, Princeton University, Princeton, NJ 08544, USA and Max-Planck Institut 
fur Biophysikalische Chemie, Am Fassberg, D-3400, Gottingen-Nikolausberg, West 
Germ any 

Received 19 January 1987 

Abstract. An experiment measuring the transition to a convective pattern in a Rayleigh- 
BBnard cell is shown to furnish evidence supporting the fact that the onset of a centre 
manifold determines scaling equations relating the intensity of intrinsic fluctuations to the 
other characteristic small parameters of the system. 

The identification of synergistic organisations with a locally attractive locally invariant 
centre manifold (CM) emerging beyond a dynamic instability has been shown to explain 
successfully the contraction in phase space occurring near a dynamic critical point 
[ l ,  21. The onset of a CM in phase space corresponds to the statistical subordination 
of fast-relaxing modes to order parameters as is verified in dissipative systems. The 
order parameters are the CM coordinates. In order for this structure to be sustained, 
a balance exists between the fast deterministic drift towards the CM and the diffusive 
pressure provided by the intrinsic fluctuations. This competition determines the proba- 
bility distribution about the CM [2-41. Thus the strength of the statistical bath is not 
given by the intensity of equilibrium thermal fluctuations [5] but it is related to the 
unfolding parameters of the system [4]. 

To pose the problem adequately, let T be a transformation associated to the C M  

reduction of fast modes. That is, the system transformed under T is in PoincarC-Jordan 
normal form [ I ,  21. If X is the stochastic Yector field describing the system near the 
threshold, then the following decomposition is unique: 

where X ,  is the vector of order parameters, X,, the vector of fast-relaxing modes and 
f ;  the random source term. A stochastic order parameter equation is obtained by 
integrating the general Fokker-Planck equation for the probability functional 
P ( X s ,  Xf, t )  along the CM: 

V = TX = Xs + X f +  Tf ( 1 )  

r 

where the C, are the bare coupling diffusion coefficients. The strength of the statistical 
bath given by the random source term f should be fixed in order to obtain the proper 
cwreduced equation whose drift part represents the onset of the dissipative structure. 
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In order to illustrate these ideas, we shall concentrate on a specific example: the 
cM-reduced equation describing the transition to a convective pattern in a Rayleigh- 
Binard cell swept through its threshold by means of a controlled heat input from the 
bottom plate [5-71. 

We next concentrate on the case of a step in the heat input of the bottom plate of 
the Rayleigh-Binard cell [5-71. Following standard notation [5,6] we write 

where V = ( 8 ,  U, w ) ,  U = (U, U), ( U ,  U, w)  =velocity field and 8 = deviation of the tem- 
perature from the linear conducting profile between the boundaries z = 0, z = 1. The 
field V obeys the Boussinesq equations [ 5 ] .  The distance, time and temperature are 
scaled respectively by d, d 2 / K ,  ~ v / a g d ~ ,  where d is the cell height, K and v are the 
thermal and viscous diffusivities and a is the thermal expansion coefficient. The 
eigenvectors e:’ depend on the vertical coordinate z and are proportional to exp(iq r )  
where r is the horizontal vector, q is a horizontal wavevector and qo is the critical 
wavevector for convective onset. The linear self-adjoint Boussinesq operator with 
eigenvectors e:’, i 2 1,  is Do defined as [5] 

The gradient V refers to the horizontal vector r, R, is the critical Rayleigh number and 
U is the Prandtl number. Free boundary conditions are assumed [5,6]. The Fourier 
coordinates are defined in the canonical way: 

v:’ = (e:’, v). ( 6 )  

( v, , v2) = [(+e? e2 + R,( UT u2 + W T  w,)],,, . 
The inner product ( V ,  , V2)  is defined by 

(7)  

The symbol [ I,,, indicates that we are averaging over a layer. The Nusselt number N 
is determined from the convective heat flow which is given by ( N - l ) R / R , .  Thus, 
we have 

( N - 1 ) R / R, = C’ I I Xs I I ’ . (8) 
The constant c will be given later. The scaling relations will be given in terms of the 
small parameter E defined as 

E = ( R  - R,)/R,. (9) 

In order to integrate (2), we make use of the following factorisation of P :  
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where the Gaussian widths g;'", to be calculated, determine the size of fluctuations 
about the CM. The symbol (( )) denotes the average over an ensemble of realisations 
of the random source field f: That is, the CM equations are given by 

(( Vb")) = Fb"( { Vb"}) (12 )  

where the F:' are analytic functions which represent the statistical subordination of 
the fast variables [l-41. 

Such functions can be obtained to a first approximation by the adiabatic elimination 
method, i.e. they are determined by means of the implicit function theorem making 
V:) = 0, j 3 2. 

The coefficients C, will be factorised in terms of the diffusion coefficients: 

( 1 3 )  

In order to properly display the relative size of each term in the cM-reduced 
equation, the diffusion coefficients d y )  are factorised as d y ) =  k J f ) ,  where k is a small 
parameter to be properly scaled and the quantity bearing a tilde is of the order of unity. 

Making use of equations (10 )  and ( 1  1) and the notation introduced in the preceding 
discussion equation ( 2 )  is 

c, = d ( ' ) d ( j )  
4 4 '  

We must adjust the Gaussian widths g y )  so that relation (14 )  becomes an equation of 
continuity for Qs, i.e. we have a conserved flow of probability on a strip about the 
CM. The aim is to reduce (14 )  to a FP equation equivalent to the empirical Langevin 
equation proposed previously [ 51: 

_ - _  [ E - ~ ( V + q ~ ) 2 - g 4 2 ] 4 + + f ( r ,  t )  
a t  T~ 

where the inhomogeneous term was regarded in previous treatments of this problem 
as a phenomenological source term. This forcing field modelled the effect of the fast 
hydrodynamic modes which adjust themselves in the adiabatic following. 

The parameters in (15) were evaluated (cf [ 5 ] ) :  

7T 
(+ = 0.78 qod =z g = O S .  

The radius of the cell under consideration is L = 4.72. The order parameter is defined 
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as follows: 

+ = c C v:' exp(iq r ) .  
Q 

The constant c is obtained from the following relations (cf [5]): 

(16) 

where 

ao( z) = 4i cos T Z  ao( z) = 2fi sin T Z  eo( z )  = 9 f i 7 r 3  sin m. ( 1 7 )  

Thus 

Thus the chi-reduced equation which corresponds to the Langevin equation ( 1 5 )  is 

In order to obtain ( 1 9 )  from (14), we have to introduce the following scaling relations: 

The quantities k' and i:), j bigger than 1, are of O( 1 ) .  We also have 

T i m e  ( S I  
Figure 1. Integration of the cM-reduced Fokker-Planck equation (19). Use is made of 
the scaling relations ( 2 0 1 4 2 2 )  and the normalised parameters are taken equal to 1 .  The 
full curve gives the theoretical predictions for the convective heat flow as defined by 
equation (8).  The experimental data were obtained from [ 5 ] .  
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Then, to O ( E ) ,  (14) reduces to (19) if and only if 

( 2 2 )  g y )  = /(kJb")2 

where A V ) - '  is the characteristic relaxation time for the mode Vv'. 
We proceed now to integrate (19) making use of the scaling equations (20)-(22) 

and choosing the normalised parameters equal to 1. The full curve in figure 1 corre- 
sponds to the convective heat flow as given by (8). The experimental data can be 
found in [5]. The size of the step in the heat input determines the unfolding small 
parameter: E = 0.049( 1 + 7r2& L2) + p2& L2. 

The intensity of the random source termf( r, t )  was adjusted in previous approaches 
[ 5 ]  in order to model the effect of fast hydrodynamic modes on the transition to a 
convective state. It has been shown [5] to differ considerably from the value obtained 
for equilibrium thermal fluctuations. According to this work (see also [4]), the strength 
of the random source should not be regarded as an adjustable parameter; rather, the 
onset of a CM implies that this parameter is dependent on the Gaussian width of the 
probability distribution about the CM as shown by (20)-(22). 
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